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Abstract

The stability of streaming self-gravitating triple superposed fluids layers

of different densities pervaded by magnetic fields has been developed.

Such a study is of interest since it is essential for understanding the

reason of the breaking up of the fluids layers resulting in the appearance

of condensation within astronomical bodies. On utilizing the

perturbation technique, the problem is formulated and solved.  The

eigenvalue relation is derived and discussed. The magnetic field is

stabilizing while the streaming is strongly destabilizing. The self-

gravitating force as well as the densities ratio of the triple fluids are

stabilizing under certain restrictions. Such results are logic and may be

found true during flying of the planes in bad weather of the atmosphere.
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1. Introduction

The dynamical stability of superposed fluids layers subject to uniform
Earth gravitating force has been considered by a lot of Researchers cf. [1-
12] and [22]. The gravitating stability of two stationary superposed fluids
under the external gravitating force, Rayliegh-Taylor instability is
studied by Chandrasekhar [4]. See also the Kelvin-Helmholtz instability
there. The stability of self-gravitating fluid is the task of many scientists
in the present era due to its astrophysical applications. It was Jeans
(1929) who the first to investigate the stability of self-gravitating
homogeneous medium. The stability of self-gravitating fluid jet in very
simple case is elaborated for the first time by Chandrasekhar and Fermi
[3]. Later Chandrasekhar [4] made some modifications for such studies.
In the recent decades, many advanced works concerning stability of
different models influenced by several external forces have been
documented by Radwan [14-21].

In the present work we investigate the stability of streaming self-
gravitating triple superposed magnetized fluids layers.

2. Formulation of the Problem

We consider three superposed fluids of densities )2()1( , ρρ  and )3(ρ  in

the regions “ ( )0I ≤<−∞ z ”, “ ( )dz <≤0II ” and “ ( )∞<≤ zdIII ” pervaded

by the uniform magnetic fields

( ) ( ) ( ) ( ).3,2,1,0,0,00 == sHH s (1)

This system of fluids is assumed to be streaming with velocity

( ).0,0,0 Uus = (2)

The model is acting upon the self-gravitation and electromagnetic
forces in addition to the internal pressure gradient and inertia forces,
where the effect of the surface tension is ignored. The fluids are
considered to be incompressible, non-viscous and perfectly conducting.

The fundamental equations describing such kind of problems are the
combination of the ordinary fluid dynamic equations together with
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Maxwell equations of the electrodynamics’ theory and those concerning
self-gravitating forces. Under the present circumstances, these equations
are given by

( ) ,ssssss
s

s HHPdt
ud

φ∇ρ+∧∧∇µ+−∇=ρ (3)

( ) ,ss
s

uHdt
Hd

∇⋅=  (4)

,42 ss Gρπ−=φ∇ (5)

,0=⋅∇ su (6)

,0=⋅∇ sH  (7)

where

( )∇⋅+
∂
∂= utdt

d (8)
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Here u,ρ  and P are the fluid density, velocity vector and kinetic

pressure, H and µ are the magnetic field intensity and permeability

coefficient, φ is the self-gravitating potential and G is the gravitational

constant.

3. Perturbation Analysis

Let the system of triple self-gravitation streaming fluids layers be

perturbed along the interfaces. Every variable quantity ( )tzyxQ ,,,

could be expanded as

( ) ( ) ( ) ,,,,,,, 10 ++= tzyxQzQtzyxQ (11)
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where Q here stands for sss Hu φ,,  and sP  with s denotes different

regions of fluids, 0Q  is the value of Q at 0=t  while ( )tzyxQ ,,,1  is

small fluctuating variable of Q at any instant of time t. In view of the

expansion (11), the z-distance of the surface waves along the different

interfaces of the fluid may be written as:

η+= 0zz (12)

where, 00 =z  and dz =0  while η is being

[ ( ) ].exp0 tykxki yx σ++ε=η (13)

The elevation of the surface wave is η while 0ε  the initial amplitude, σ

the growth rate, while xk  and yk  (real) are the wave numbers along x

and y directions. 0=z  at “ III − ” interface and dz =  at III-II

interface.

By the use of the expansion (11) into equations (3) - (7), we get the
following unperturbed and perturbed systems of equations.

Unperturbed system

( ) ,0000
0 sssss
s

s HHPdt
ud

ϕ∇ρ+∧∧∇µ+−∇=ρ  (14)

( ) ,00
0 ss
s

uHdt
Hd

∇⋅=  (15)

,40
2 ss Gρπ−=ϕ∇  (16)

,00 =⋅∇ su (17)

.00 =⋅∇ sH (18)

Perturbed system

( ) ( ) ( ( )),10111010
1 sssssssss
s

s HHPHHuut
u

⋅µ+ϕρ−−∇=∇⋅µ−













∇⋅+

∂
∂

ρ (19)
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( ) ss
s

uHdt
Hd

10
1 ∇⋅= (20)

,01
2 =φ∇ s (21)

,01 =⋅∇ su (22)

.01 =⋅∇ sH (23)

The unperturbed system of the equations (14) - (18) has been solved
and the required unperturbed variables are identified upon applying the
boundary conditions: the selfgravitating potentials and their derivatives

must be continuous at 0=z  and .dz =  interfaces. The kinetic pressures

and potentials are given by,

,
2 0

2
00

ssss HAP φρ+µ−= (24)

,2 21
2)1()1(

0 czczG ++ρπ−=ϕ (25)

,2 21
2)2()2(

0 czczG ++ρπ−=ϕ (26)

( ) ( ),242 )3()2(2)3()2(
21

2)3()3(
0 ρ−ρπ+ρ−ρπ−++ρπ−=ϕ GdzGdczczG (27)

where 1, cAs  and 2c  are arbitrary constants of integration.

Now, we are going to solve the perturbed system of equations (19) -
(23). Equations (19) and (20) may be written as

( ) ( ) ,11010
ssssss HHuut Π−∇=∇⋅µ−





 ∇⋅+

∂
∂ρ (28)

( ) ( ) ,., 1010
1 ssss
s

HuuHt
H

∇−∇⋅=
∂

∂
(29)

where

( ).10111
ssssss HHP ⋅µ+ϕρ−=Π (30)
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Based on the perturbation technique, every perturbed quantity

( )tzyxQ ,,,1  could be expressed as:

( ) ( ) [ ( ) ].exp,,, 11 tykxkizQtzyxQ yx σ++= ∗ (31)

The perturbed system of equations (21) - (23) and (28) - (30), leads to the
equations,

( ),011 UikKHuiH xx
ss +σ= (32)

[ ( ) ] [( ) ],22
11 Ax

ss
x

s UikUiku Ω++σρΠ∇+σ−= (33)

,01
2 =Π∇ s (34)

with

.2
0

2 ρµ=Ω HkxA (35)

The last equation (35) presents the Alfven wave frequency AΩ  defined in

terms of xkH ,,0 ρ  and µ.

In view of the space-time dependence (31), equation (34) leads to
second order differential equations. Apart from the singular solutions,

∏s
1

 in the different regions “ 0<<−∞ z ”, “ dz <≤0 ” and “ ∞<< zd ”

are given by,

( ) ( ) ,11
1

zkeB η=Π (36)

( ) ( ( ) ( ) ) ,222
1 η+=Π − zkzk eCeB (37)

( ) ( ) ,33
1

zkeC −η=Π (38)

where, ( ) ( ) ( )221 ,, CBB  and ( )3C  are arbitrary constants of integration,

with ( ) 







+= 2

1
22
yx kkk  is the net wavenumber of perturbation.

By means of equations (36) - (38), and in view of (32) - (34) the

magnetic fields sH1  and velocities su1  due to perturbation in the different
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regions could be obtained. Moreover, on utilizing the same technique as
above, equation (21) is solved and finally we have obtained

,)1()1(
1

zkeD η=ϕ (39)

( ) ,)2()2()2(
1 η+=ϕ − zkkz eEeD (40)

zkeD −η=ϕ )3()3(
1 (41)

where ( ) ( ) ( )321 ,, DDD  and ( )2E  are constants of integration to be

determined.

The foregoing constants ( ) ( ) ( ) ( ) ( ) ( ) ( )3213221 ,,,,,, DDDCCBB  and

( )2E  could be determined upon applying the following boundary
conditions.

(i) The gravitational potentials and their derivatives across the
perturbed fluids interfaces must be continuous at the boundaries “ 0=z ”

and “ dz = ”.

(ii) The normal components of the velocities of the fluids must be

continuous across the boundaries “ 0=z ” and “ dz = ”.

(iii) The normal component of the velocities of the fluids must be
compatible with the velocity of the perturbed boundary interfaces at

“ 0=z ” and “ dz = ”.

Finally, by the use of the resulting data and applying the balance of
the pressure across the perturbed interfaces “ 0=z ” and “ dz = ” with

taking into account the effect due to unperturbed pressures, the following
relation is obtained,

( ) ( ) ( ( ) ( ) ( ) )
( ( ) ( ) ) ( ( ) ( ) ) ( )






ζρ−ρρ−ρ

ρ−ρ−ρ−
µ=+σ

ζ

sinh

21
1232

312
22

0
2 ekHLUik xx

[ ( ) ( ) ( ( ) ( ) ( ) )] ,2122 3212






ρ−ρ−ρ−+ζρπ+ ζ−eG (42)

where
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kd=ζ (43)

is the dimensionless wave number while L is defined by

( ) ( ) ( ) ( ) [ )sinh(sinh )2()3()2()1()2()3()2( ζρρ−ρζρ−ρρ−ρ=L

{ }] ( ) [ ].)sinh()}cosh(1{)cosh(1 )3()3()1()2()3( ζρ−ζ−ρρ−ρ−ζ−ρ− (44)

where the stability criterion is being ( ) 0Re >σ

4. Discussions

The relation (42) is the desired general relation for analyzing the
stability of the present model of selfgravitating streaming triple

superposed magnetized fluids layers. It relates the growth rate σ with

the densities )2()1( , ρρ  and ,)3(ρ  the non-dimension wave number ζ , the

streaming speed U, the wave number xk  in x-direction and the

parameters G and 0H  of the problem.

In absence of the magnetic field influence, the relation (42) gives,

( ) [ ( ) ( )].2122 )3()2()1()2(2 ρ+ρ−ρ−+ζρπ=+σ ζ−eGLUikx (45)

This is the stability criterion of self-gravitating streaming triple
superposed fluids layers of non-conducting fluid.

If we neglect the effect of the self-gravitating forces, the general
eigenvalue relation (42) reduces to

( ) ( ) ( )
( ) ( )

,
)sinh(

21
)1()2()3()2(

)3()1()2(
22

0
2










ζρ−ρρ−ρ

ρ−ρ−ρ−
µ=+σ

ζeLkHUik xx (46)

This is the stability criterion of streaming triple superposed magnetized
fluids layers of different densities.

Several dispersion relations for different models of problems could be
obtained from the general criterion (42) under the following
simplifications:
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HG (48)

In order to discuss and determine the stable and unstable domains

and their characteristics we have to write the eigenvalue relation (42) in

the following dimensionless form,

( )
( )

( ) ( ( ) ( ) ( ) )
( ( ) ( ) ) ( ( ) ( ) ) ( )






ζρ−ρρ−ρ

ρ−ρ−ρ−ξ











ρπ

µ
=

ρπ

+σ ζ

,sinh

21

22 1232

3122

2)2(

2
0

2

2 e
dG

HL
G

Uikx

( ) [ ( ) ( ) ( ( ) ( ) ( ) )] ,212 3212
2 




ρ+ρ−ρ−+ζρ

ρ
+ ζ−eL (49)

where ( )dkx=ξ  is the dimensionless wave number in x-direction, while

the dimensionless common factor “L” is still defined by equation (44).

The dispersion relation (49) has been computed via the computer for

different and several values of the densities ratios “ ( ( ) ( ) )21 ρρ=u ” and

“ ( ( ) ( ) )23 ρρ=v ”. Such calculations have been carried out for different

values of ( )8.0and5.0,2.0,00 =GHH  and different values of
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( ) ,02 2 =




 ρπ−=∗ GUikU x  )9.0and7.0,3.0  where ( ) µρπ= 222 dGHG

has a unit of magnetic field. The results and discussions of stability in

the simplest case as 0* =U  may be classified into three classes as

follows.

(i) As ( ) =GHH0  zero for ( ) ( ),1.0,1.0, =vu  it is found that the

model is completely unstable for all perturbed wavelengths. This is the
most dangerous case for the present triple superposed magnetized fluids
layers. This must be taking into account in the natural life (as

( ) ( ) ( )321 :: ρρρ  is 1:10:1) during flying the plane in the upper layers of

the atmosphere from country to another.

(ii) This case as ( ) =GHH0  zero for ( ) ( ) ( ) ( )5.0,4,3.0,9,3.0,7, =vu

and ( ).5.0,6   This case is the most crucial one where we found that there

are some stable domains and unstable domains of certain values of

( ).0 GHH  Corresponding to the foregoing values ( ) ( ) ( )5.0,4,3.0,9,3.0,7

and ( ),5.0,6  it is found that the unstable domains are “ 339710 .<ζ< ”,

“ 1921410 .<ζ< ”, “ 4054700 .<ζ< ” and “ 22314400 .    <ζ< ”. The

stable domains are given by, “ ∞<ζ≤    .133981 ” ∞<ζ≤    .192141 ”,

“ ∞<ζ≤    .405470 ” and “ ∞<ζ≤     .2231440 ”, where the equalities

are corresponding to marginal stability states. The following states are
exactly same as that case.

As ( ) 2.00 =GHH  with ( ) ( ) ( ) ( )5.0,4,3.0,9,3.0,7, =vu  and

( ),5.0,6  it is found that the unstable domains are “ 339910 .    <ζ< ”,

“ 1921410 .<ζ< ”, “ 4054700 .<ζ< ” and “ 0.223144    0 <ζ< ”. The

neighboring stable domains are “  . ∞<ζ<339771 ”, “ 0192141 <ζ<. ”,

“ ∞<ζ<405470. ” and “ ∞<ζ<2231440. ”.  The critical points at which

transition from stable to those of instability are being “ ,3398.1=cx

4055.0,1921.1  and 22314.0 ”.

For ( ) 5.00 =GHH  with ( ) ( ) ( ) ( )5.0,4,3.0,9,3.0,7, =vu  and

( ),5.0,6  it is found also, there are stable and unstable domains.
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For ( ) 8.00 =GHH  with ( ) ( ) ( ) ( )5.0,4,3.0,9,3.0,7, =vu  and

( ),5.0,6  the unstable domains are “ 3397710 .<ζ< ”, “ 1921410 .<ζ< ”,

“ 4054700 .<ζ< ” and “ 22314400 .<ζ< , while the ordinary and

marginally stable domains are “ ∞<ζ≤133981. ”, ∞<ζ≤192141. ”,

“ ∞<ζ≤405470. ” and “ ∞<ζ≤2231440. ”.

(iii) For ( ) 8.00 =GHH  with ( ) ( ) ( ) ( )1.0,5,1.0,4,1.0,3, =vu  and

( ),3.0,3  it is found that the model of magnetized triple superposed fluids

is completely stable for short and long wave lengths.

In addition, there are a many cases like this case.

5. Conclusion

In taking into account different values of the streaming “ ( ,0 Uu =

)0,0 ”, in all foregoing cases and states we find that the unstable

domains are increasing while those of stability are decreasing. That is
the streaming has a destabilizing influence. The electromagnetic force is
strongly stabilizing but in some cases, the destabilizing influence of the
self-gravitating force is dominant over that of the magnetic field. The
densities ratios “u” and “v” are stabilizing or not according to restrictions.

The present results may be used for testing the stability of
superposed fluids layers in the high levels of atmosphere to avoid the
very deep cavities during the flying of the planes in traveling from
content to another. That is as the plane flying through the finite layer of
depth d and there is already unstable region anywhere in this layer due
to some natural effects caused by the inertia force, say due to the
streaming character of the model.
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